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Abstract. Biometrics-based authentication systems offer enhanced security and
user convenience compared to traditional token-based (e.g., ID card) and
knowledge-based (e.g., password) systems. However, the increased deployment
of biometric systems in several commercial and government applications has
raised questions about the security of the biometric system itself. Since the
biometric traits of a user cannot be replaced if compromised, it is imperative
that these systems are suitably secure in order to protect the privacy of the user
as well as the integrity of the overall system. In this paper, we first investigate
several methods that have been proposed in the literature to increase the secu-
rity of the templates residing in a biometric system. We next propose a novel
fingerprint matching architecture for resource-constrained devices (e.g., smart
cards) that ensures the security of the minutiae templates present in the device.
Experimental results describing the impact of several system parameters on the
matching performance as well as the computational and storage costs are pro-
vided. The proposed architecture is shown to enhance the security of the minu-
tiae templates while maintaining the overall matching performance of the sys-
tem.

1 Introduction

Fingerprint-based biometric systems are among the most popular personal authentica-
tion systems partly because of their long history. Further, fingerprint sensors are rela-
tively small and cheap and, hence, can be readily incorporated into devices such as
cellular phones, laptop computers, computer keyboards, PDAs, etc. This has resulted
in a proliferation of these devices in the market.

A generic fingerprint system consists of four main modules: (a) the acquisition
module which senses the fingerprint of a user and produces a raw image; (b) the fea-
ture extraction module which processes the raw image and extracts a compact set of
features representing the fingerprint; (c) the matching module which compares the
extracted feature set with the templates residing in the database by generating match
scores; and (d) the decision module which determines or verifies the identity of the
user based on the match scores. The performance of a fingerprint matcher hinges on
the accurate derivation of transformation parameters (typically, the translation and
rotation values) relating two feature sets. This process, known as registration or

alignment, impacts the matching performance of minutiae-based systems'.

' Some algorithms avoid alignment. See [1], for example
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Ratha et al. [2] discuss the various types of attacks that can be launched against a
fingerprint system which can undermine the integrity of the system and, subse-
quently, result in the loss of privacy of the user. Therefore, it is necessary to design
techniques that either prevent or neutralize the effect of these attacks. In this paper we
focus on template protection schemes in resource-constrained systems such as smart
cards where matching can potentially be performed in an external host computer.

Yang and Verbauwhede [3] describe a fingerprint system consisting of a secure
and a non-secure part. The biometric template resides in the so-called secure part and
the matching operation, which requires access to the stored biometric template, is
executed in this part. In their formulation, the authors augment local minutiae infor-

mation with minutiae neighborhood information. The distances (d ) and angles ()

between a specific minutia M and its nearest NN (typically 6) neighbors, and the

directions (7)) of these neighbors define the local structure for M . A collection of
local structures representing all the minutiae in the image constitutes the template.
During the matching process, no alignment (registration) information describing the
translation and rotation between the template and input feature set is provided.
Rather, the matcher compares the local structures of all minutiae in the input set
against those in the template and two local structures are deemed to be a match if at
least 3 of their 6 neighbors are similar in terms of the (d , @, 7)) triplet; the final

match score is a function of the total number of matched structures. Experiments
conducted on a very small database (of 10 different fingers) show that a 1% FRR
(False Reject Rate) can be achieved at a 0% FAR (False Accept Rate).

Pan et al. [4] introduce a match-on-card system for fingerprints. Their system uses

(x,y,6) values for representing the minutiae set. The 3-dimensional transformation

space (describing the alignment) is discretized into a set of candidate transformations
defined by an accumulator array. The transformation between the input feature set
and the template is obtained by comparing all the minutiae in the two sets. The au-
thors employ a hierarchical scheme that evolves from a coarse-to-fine scale to deter-
mine the final transformation. First, a coarsely quantized accumulator array is used to
compute the approximate transformation. The array cell corresponding to the best
transformation is further discretized and the process repeated several times. The itera-
tive nature of the algorithm ensures that only a limited amount of memory is required
at any instance. An EER (Equal Error Rate) of ~6% is reported for the experiments
carried out with 100 different fingers.

Moon et al. [5] describe another minutiae-based match-on-card system. Again, the
minutiae are represented as (X, y,6) triplets. The registration between the input

feature set and the template is accomplished outside the smart card in order to reduce
its workload. To facilitate this, the smart card stores the average horizontal and verti-

cal coordinate values ( ,u)‘f, ,UYE ) and the direction ( ,ug ) of all minutiae in the en-
rolled template. When an input minutiae set is presented to the smart card for match-
ing, these average values are calculated (g, u;,M,) by the host computer. The
parameters /., iy i, are next transferred from the smart card to the host, where

the minutiae of the input set is translated and rotated such that
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ﬂ)'( = lu)f, ‘u}f = ﬂf , ﬂé = ﬂf . The transformed input minutiae are sent to the smart

card, where point matching yields the number of matched minutiae. The authors only
report the genuine matching results on a very small database (of 10 different fingers)
and, hence, it is difficult to assess the overall matching performance of the system.
However, in our opinion, the use of average coordinates and angle provides a rather
coarse (and possibly, incorrect) registration that will degrade system performance.

Ishida et al. [6] present a matching scheme for smart cards. The smart card stores
the binary fingerprint image as well as the core point of a gray-scale fingerprint im-
age. When an input fingerprint is presented for matching, the host computer transmits
the location of its core to the smart card which determines the correct translation
parameter. Next, the smart card selects some coordinates (typically around the minu-
tiae points of the enrolled template), and after modifying them using the translation
parameter, sends these coordinates to the host. The host then transmits a rectangular
image patch (called chip, which is centered around the received coordinate) of the
input image to the smart card, which proceeds to calculate the similarity between the
received image chip and the corresponding chip of the enrolled image. To account for
small variations in translation, multiple input chip images obtained via small shifts
around the initial chip image are sent to the smart card. If, for a particular chip loca-
tion, no match can be found in the input image, the smart card selects another chip
location, and repeats the process. For a database with 576 fingers, the authors report
that a 2% FRR is achieved at 0.1% FAR.

Yang et al. [7] discuss a method for fingerprint verification in another resource-
constrained device — the Personal Digital Assistant (PDA). The authors implement
the minutiae extraction, core point detection and minutiae matching operations in
fixed-point arithmetic (32 bit words with [-32768, 32767] range), citing that majority
of processors in mobile applications do not support floating-point arithmetic. In their
scheme, minutiae (represented via (X, y,6) triplets) are extracted using a modified

version of the ridge line tracing algorithm in [8]. The transformation parameters are
recovered using the location of core point in the two images. To optimize the compu-
tation time, only a subset of minutiae in the input set is used for matching; in fact,
only minutiae closest to the fingerprint core are used during the matching process,
which in itself employs a simple bounding box technique. The authors report that on
a database of 383 different fingers, an EER of nearly 7% is achieved (the correspond-
ing floating-point EER is reported as 6%).

2 System Architecture

The goal of automatic fingerprint matching systems is to accurately determine or
validate an individual’s identity. However, these systems are vulnerable to spoofing,
registration template theft, and other attack methods [10]. In order to discourage iden-
tity theft, the registered fingerprint feature set needs to be held in a secure location.
One possibility is to store the registered fingerprint information and accomplish
matching on a smart chip device (e.g., smart card, USB dongle) kept in the posses-
sion of the individual. The chip releases the secure information (e.g., cryptographic
keys), or a verification signal, upon being presented with a fingerprint feature repre-
sentation matching the registered representation stored on the chip. The difficulty in
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this application scenario is that the smart chip processor is generally incapable of
handling fingerprint matching duties with satisfactory accuracy.

We propose a method where sufficient information is passed to the fingerprint
scanning unit’s processor (i.e., an external processor) to allow alignment of the tem-
plate, but which would be insufficient to reconstruct the user’s fingerprint representa-
tions. This is accomplished by using a multi-step approach in which certain selected
verification tasks are moved off chip. The steps needed for fingerprint verification —
fingerprint representation extraction, alignment and matching — are decoupled into
separate processes.

The method is built upon the previously proposed ridge-texture based matching al-
gorithm of Ross et al. [11]. Matching using this algorithm is fast and accurate once
the templates are properly aligned, and can be handled by the smart chip’s processor.
More computationally intensive operations such as feature extraction are imple-
mented in the scanning unit. Ridge map alignment is achieved by a comparison of
minutiae information in the form of minutiae triplet sets. The minutiae triple sets are
constructed in such a way that neither the individual’s ridge map nor minutia map can
be regenerated from it. This allows much of the computationally expensive ridge map
alignment to be moved off-chip without loss of security.

2.1 Basic Matching Algorithm

Here, a simple description of the algorithm that forms the basis for the smartcard
based fingerprint matching is provided. For more details about this algorithm, please
see [11]. A set of Gabor filters, whose spatial frequencies correspond to the average
inter-ridge spacing in a fingerprint, is used to capture the ridge strength at equally
spaced orientations. The number of these filters is an important system parameter:
e.g., if 4 filters are used, the filters are oriented at 0°, 45°, 90° and 135°; for 8 filters,
the orientation difference between filters is 22.5°, allowing a finer representation of
the fingerprint ridges. A square tessellation (based on the block size used for grid
generation, e.g., 8x8 blocks) of the filtered images is then used to construct a multi-
dimensional ridge feature map. This map is expressed as an array of values, where
each value can be represented with a fixed number of bits (e.g., a 4-bit representation
allows 16 different levels for each feature while an 8-bit representation allows 256
levels, increasing the granularity). A similarity score of two fingerprints can be gen-
erated by finding the Euclidean, Hamming or similar vector distance between the two
ridge feature maps. Further, multiple templates (e.g., 3) can be used instead of a sin-
gle template during verification: using multiple templates helps in better capturing the
variability of the fingerprint, hence increasing the matching accuracy.

When the ridge feature map is extracted, the 2 images need to be aligned and tes-
sellated in the same manner. This requires the prior determination of the relative
transformation between the two images. It is this step that is moved off the smart chip
in the proposed algorithm.

2.2 Triplet-Based Fingerprint Registration

First, the minutiae of the fingerprint are extracted. Then, a minutia triplet (Figure 1) is
used to describe a set of 3 minutia points.
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*. minutia location
h: height of perpendicular

0: angle deflection

o.: bisected fraction

Fig. 1. A minutiae triplet triangle

Four parameters describe the shape of the minutia triplet (h, a, s, 0):

Height of Perpendicular (h): The height in pixels from the longest side to the vertex
opposite it.

Bisected Fraction (a): The fraction (from 0.0 to 1.0) of the longest side from the
perpendicular to its clockwise vertex (the “Primary Vertex”).

Deflection Angle (0): The angle of deflection that the longest side (running from its
clockwise vertex to its counterclockwise vertex) makes with the horizontal ray run-
ning left to right in the fingerprint image.

Side Length (s): The length associated with a.

The location of the triplet in the image is defined by the (X,y) location (in pixels)
of the primary vertex.

The full triplet list contains all possible combinations of the minutiae in groups of
three. The extraction of the parameters depends upon the accurate determination of
the longest side of the triplet triangle and the ordering of the vertices. The following
qualifying criteria are applied to avoid unsuitable triplets:

e The longest side of a triplet triangle must be greater than the 2" longest side by a
certain threshold.
e The height of the triplet triangle must be greater than a certain threshold.

The selected triplets may still be more than what can be stored in a given smart
chip. This number can be reduced by ordering the triplets using a scoring function
and retaining the N highest scoring triplets (N is defined by the storage limitations of
a given smart chip). The scoring function ranks the triplets according to various fac-
tors including:

e Repeatability of the three minutia in a given triplet in subsequent fingerprint sam-
ples (less likely if the triplet uses minutia on the periphery of the print, or far away
from each other), and

e Repeatability of parameter measurement between samples (less likely if a triplet
used minutia that are close together).

The scoring function is maximized when the triangle is centrally located and of
“medium size”, best satisfying both parameter stability and minutia repeatability.
Finally, the pruned triplet list and the ridge feature map for the enrollment template
are stored in the smart card.

2.3 Fingerprint Verification

Firstly, the minutiae are extracted from the query fingerprint and a complete triplet
list generated in the scanning unit. The smart chip device is then requested to transmit
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Fig. 2. Exchange of information between the smart card and the scanning unit

the parameters of the pruned triplet list, which is sent withholding the identifying
(x,y) location information. Each transmitted triplet is tracked by an index number.
The triplet list from the smart chip (list A) is next compared to the complete triplet list
extracted by the scanning unit (list B). A triplet hit is said to occur when all triplet
parameters from a triplet pair are within proscribed distances.

The resultant triplet hit list contains the following information: (index”, X2, yb,
A®™) where A™ = 0" - 8°. The hit list is transmitted to the smart chip device. Using
the index identifier to reference x* and y*, each triplet hit is converted into the per-
ceived Ax™ = x* - X", Ay*"= y* - y°, and A®™ transformations. Using the Parzen win-
dow voting technique, the global AX and AY translations for the image is estimated
from the individual Ax" and Ay™ values. The hit list is then pruned to retain hits
whose Ax™® and Ay® fall within a threshold distance from the global AX and AY.
Parzen window voting is next applied to the pruned list to determine the global A
value. The global transformation values (AX, AY, and A@) are sent from the smart
chip to the scanning device, where they are used to “align” the ridge feature map of
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the query fingerprint. The aligned ridge feature map is transmitted to the smart chip
for matching, using the method described in Ross et al. [10]. If the match results in a
distance score within the match tolerance threshold, a verification signal or the secret
information (e.g., cryptographic key stored in smart card) is transmitted to the outside
host.

3 Experimental Results

In this section, we provide results aiming to show the effect of different system pa-
rameters (block size, number of filters, feature bit quantization, and number of tem-
plates per user) on the overall performance. These results can be used to set the sys-
tem parameters for a specific smart-card based fingerprint matching system,
considering required accuracy and execution time, and the smart card capacity. Note
that when using multiple templates, the conglomerate matching distance between a
query and multiple template images is selected to be the minimum value of the asso-
ciated distance set.

We used the Siemens Fingerprint Database, containing 100 images each of 36 dis-
tinct users. Images are 224x288 pixels, with 500 DPI resolution, and a 8 bit/pixel
gray level quantization. ROC (Receiver Operating Characteristics) curves are gener-
ated by considering 13 images per user as template images, and 87 images per user as
query images.

Effect of Block Size: Figure 3 shows the ROC curves for different block sizes, with
other parameters fixed (number of filters is 4, bits per feature is 8). We see that 8x8
block size is the optimal one: smaller blocks (4x4) make the system too sensitive to
block tessellation boundary artifacts. On the other hand, larger blocks (16x16) de-
crease the discriminability of templates, hence resulting in inferior performance.

GAR (%)

ize: 4xd, temnplate no: 3
8, template na: |

6, template nec 3|7

10 ' i 0
FAR (%)

Fig. 3. Effect of block size

Also, using multiple templates per user increases the performance of the system
considerably, at the cost of increased storage space and processing time (especially
critical for smart-card based applications).

Effect of Number of Filters: Figure 4 shows the ROC curves for different number of
filters, with the other parameters fixed (block size is 8x8, bits per feature is 8). It is
observed that increasing the number of filters results in increased performance, reach-
ing saturation at 4 filters. Hence, choosing 4 filters is a good tradeoff between per-
formance, and computational and storage costs.
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Effect of Feature Bit Number: Figure 5 shows the ROC curves for different bit
numbers per feature, with other parameters fixed (block size is 8x8, filter number
is 4). We observe a performance increase when the number of bits is increased from 4
to 8, especially for small FAR (False Accept Rate) values. On the other hand, increas-
ing the bit number to 16 does not result in any improvements.
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Fig. 5. Effect of bits used on matching

Effect of Multiple Template Number: Figure 6 shows the ROC curves for different
template numbers per user, with other parameters fixed (block size is 8x8, filter num-
ber is 4, bits per feature is 8). As expected, increasing the number of templates results
in increased performance, especially for small FAR values.
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Fig. 6. Effect of number of templates
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Accuracy vs. Template Size: Figure 7(a) shows the EER values against associated
template sizes (in KBytes) for several different system configurations. Similarly,
Figure 7(b) shows the FRR (False Reject Rate) values against associated template
sizes, at a FAR equal to 0.1%. Note that in these figures, the configurations that result
in values closer to the lower left corner of the graphs can be thought of as optimal
ones (low error rate and small template size).
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Fig. 7. (a) EER vs. template sizes for different configurations, (b) FRR vs. template sizes for
different configurations (FAR = 0.1%)

In light of these experiments, we can conclude that it is better to use multiple tem-
plates per user (e.g., 3) compared to using only one template and trying to extract
more information from each template (by increasing filter number, decreasing the
block size, or increasing the bit numbers per feature). Note that the computational and
storage costs are linearly dependent on the number of templates (e.g., for 3 templates,
the required storage space is tripled, along with the computational time).

4 Conclusions

A novel fingerprint matching technique suited for execution in resource-constrained
devices (e.g., smart cards) is proposed. The registration of fingerprints, which is com-
putationally expensive, takes place in the host computer (i.e., scanning unit),
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whereas the matching takes place within the resource-constrained device, without
revealing the user template to the outside environment. This accomplishes both tem-
plate security (since the matching takes place within the smart card, which can be
protected against malicious attacks via software or hardware) and high accuracy
(since the registration benefits from the availability of abundant computational re-
sources in the host) at the same time. Experimental results showing the effects of
several system parameters on the matching accuracy have been provided. These ex-
periments help in evaluating the feasibility of candidate smart-card based fingerprint
matching techniques.
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